DTU Studieprojekt - Numerical modeling of quantum confinement effects in semiconductor quantum emitters.

Bemærk at denne jobannonce er udløbet!
Annoncen er udløbet, og stillingen kan ikke længere søges. Opslaget vises udelukkende som reference

Numerical modeling of quantum confinement effects in semiconductor quantum emitters.

Udbyder
Vejleder
Sted
København og omegn
Quantum light sources are essential components for near-future optical quantum technologies, e.g. quantum secure networks and computers, where photons are used to store and transmit information [1]. Most quantum light sources operate by trapping an electron-hole pair inside a semiconductor quantum dot (QD). Upon recombination of the electron-hole pair, a single photon with a well defined energy is emitted.

A fundamental task is thus to understand the properties of confined electron and holes in semiconductor QDs, with particular reference to how the emission and absorption of light is influenced by their coupling to lattice vibrations (i.e. phonons). Effective microscopic models have been developed to this end, which take into account the effect of quantum confinement via simple analytical approximations [2, 3, 4]. However, precise numerical modeling is necessary to advance our understanding beyond the limitations of analytical methods.

The scope of this project is to simulate the behavior of confined electron and holes in semiconductor quantum dots using advanced numerical methods, e.g. the Finite Element Method [5]. You will learn how to build a model for a QD embedded into a semiconductor host material, calculate the electron and hole wavefunctions numerically, and use the results to understand the properties of emitted light.

Possible research questions that you will try to answer are the following:

  • How does the QD geometry influence the quantum state of emitted light?
  • What happens to the emission dynamics when considering realistic QD wafefunctions? In which cases are analytical approximations accurate enough?
  • Is it possible to manipulate the coupling to lattice vibrations by changing the QD properties?

Requirements
Some knowledge of quantum mechanics (e.g. Schrodinger equation, discrete energy levels, etc…) is required. Previous experience with Finite Element simulations is helpful but is not required.

Supervisors:
Luca Vannucci, lucav@dtu.dk, Building 345A/075

Niels Gregersen, ngre@dtu.dk, Building 345A/081

  • References:
  • N Gregersen, DPS McCutcheon, J Mørk, ”Single-photon sources”, in ”Handbook of Optoelectronic Device Modeling and Simulation”, CRC Press (2017), [pages 585-608]
  • A. Nysteen, P. Kaer, and J. Mork, ”Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries”, Phys. Rev. Lett. 110, 087401 (2013).
  • A. Nazir and D. P. S. McCutcheon, ”Modelling exciton–phonon interactions in optically driven quantum dots”, J. Phys.: Condens. Matter 28, 103002 (2016).
  • EV Denning, J Iles-Smith, N Gregersen, and J Mork, "Phonon effects in quantum dot single-photon sources," Opt. Mater. Express 10, 222-239 (2020)
  • R. V. N. Melnik and M. Willatzen, ”Bandstructures of conical quantum dots with wetting layers”, Nanotechnology 15, 1–8 (2003).

Emneord
Tags
Kontakt
Virksomhed/organisation
DTU Fotonik

Navn
Luca Vannucci

Stilling
Adjunkt

Mail
lucav@dtu.dk

Vejleder-info
Bachelor i General Engineering
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Bachelor i Fysik og Ingeniørvidenskab
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Kandidatuddannelsen i Fotonik
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Kandidatuddannelsen i Fysik og Nanoteknologi
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Skriv i din ansøgning, at du fandt jobbet på ofir.dk


DTU Studieprojekt - Numerical modeling of quantum confinement effects in semiconductor quantum emitters.

Numerical modeling of quantum confinement effects in semiconductor quantum emitters.

Udbyder
Vejleder
Sted
København og omegn
Quantum light sources are essential components for near-future optical quantum technologies, e.g. quantum secure networks and computers, where photons are used to store and transmit information [1]. Most quantum light sources operate by trapping an electron-hole pair inside a semiconductor quantum dot (QD). Upon recombination of the electron-hole pair, a single photon with a well defined energy is emitted.

A fundamental task is thus to understand the properties of confined electron and holes in semiconductor QDs, with particular reference to how the emission and absorption of light is influenced by their coupling to lattice vibrations (i.e. phonons). Effective microscopic models have been developed to this end, which take into account the effect of quantum confinement via simple analytical approximations [2, 3, 4]. However, precise numerical modeling is necessary to advance our understanding beyond the limitations of analytical methods.

The scope of this project is to simulate the behavior of confined electron and holes in semiconductor quantum dots using advanced numerical methods, e.g. the Finite Element Method [5]. You will learn how to build a model for a QD embedded into a semiconductor host material, calculate the electron and hole wavefunctions numerically, and use the results to understand the properties of emitted light.

Possible research questions that you will try to answer are the following:

  • How does the QD geometry influence the quantum state of emitted light?
  • What happens to the emission dynamics when considering realistic QD wafefunctions? In which cases are analytical approximations accurate enough?
  • Is it possible to manipulate the coupling to lattice vibrations by changing the QD properties?

Requirements
Some knowledge of quantum mechanics (e.g. Schrodinger equation, discrete energy levels, etc…) is required. Previous experience with Finite Element simulations is helpful but is not required.

Supervisors:
Luca Vannucci, lucav@dtu.dk, Building 345A/075

Niels Gregersen, ngre@dtu.dk, Building 345A/081

  • References:
  • N Gregersen, DPS McCutcheon, J Mørk, ”Single-photon sources”, in ”Handbook of Optoelectronic Device Modeling and Simulation”, CRC Press (2017), [pages 585-608]
  • A. Nysteen, P. Kaer, and J. Mork, ”Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries”, Phys. Rev. Lett. 110, 087401 (2013).
  • A. Nazir and D. P. S. McCutcheon, ”Modelling exciton–phonon interactions in optically driven quantum dots”, J. Phys.: Condens. Matter 28, 103002 (2016).
  • EV Denning, J Iles-Smith, N Gregersen, and J Mork, "Phonon effects in quantum dot single-photon sources," Opt. Mater. Express 10, 222-239 (2020)
  • R. V. N. Melnik and M. Willatzen, ”Bandstructures of conical quantum dots with wetting layers”, Nanotechnology 15, 1–8 (2003).

Emneord
Tags
Kontakt
Virksomhed/organisation
DTU Fotonik

Navn
Luca Vannucci

Stilling
Adjunkt

Mail
lucav@dtu.dk

Vejleder-info
Bachelor i General Engineering
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Bachelor i Fysik og Ingeniørvidenskab
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Kandidatuddannelsen i Fotonik
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Kandidatuddannelsen i Fysik og Nanoteknologi
Vejleder
Luca Vannucci

Medvejledere
Niels Gregersen

ECTS-point
5 - 35

Type
Afgangsprojekt, Bachelorprojekt, Fagprojekt, Specialkursus

Skriv i din ansøgning, at du fandt jobbet på ofir.dk


+

Mere af samme slags?

Modtag jobannoncer der minder om dette job i din indbakke.




Når du tilmelder dig accepterer du samtidig vores privatlivspolitik. Du kan altid trække dit samtykke tilbage.